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Abstract
Analytical and numerical methods are used to investigate the new localized
states of a surface magnetostatic wave envelope in a ferromagnet–dielectric–
metal structure in the framework of the extended non-linear Schrödinger
equation. The problems of the modulation instability of homogeneous states
and long-wavelength modulation of a monochromatic wave in the vicinity of
a ‘zero-dispersion’ point are discussed. The excitation conditions for a multi-
soliton state are analysed. It is shown that a certain threshold amplitude of
the initial distribution should be reached for the excitation of these states,
while no such threshold exists for the one-soliton state. The possibility of the
experimental observation of the above-mentioned non-linear states is discussed.

1. Introduction

The investigation of envelope solitons of magnetostatic waves in thin magnetic films has a long
history, nearly 20 years (see [1–4], for instance). In this field of research during this period
results have been obtained which are valuable not only for the physics of thin films, but for
non-linear physics as a whole. In spite of the fact that the investigations have been carried out
for a long time, some problems remain unsolved to the present day. One of these problems,
which is rather important from our standpoint, is analysed here. As a rule, the model of a
single-layer magnetic film is used for the interpretation of experimental results. However, for
unavoidable technological reasons the real object of investigations in the experiments is a three-
layered ferromagnet–dielectric–metalstructure. It possesses a unique non-monotonespectrum
of spin waves which differs substantially from that of a single-layer film. It is reasonable that
the theoretical model of weakly non-linear dynamics used for adequate interpretation of the
experimental data must take account of the fine structure of the linear spin excitation spectrum.
Moreover, the spatial dispersion in this structure depends essentially on the thickness of the
dielectric layer (the so-called ‘size effect’) and it can be controlled by external magnetic field.
This circumstance allows us to treat a ferromagnet–dielectric–metalstructure as an ideal model
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system for the investigations of non-linear (in particular, soliton-like) regimes of magnetostatic
wave propagation in systems with variable dispersion parameters.

The papers concerning ferromagnetic dynamics of layered systems known at the present
time can be grouped into two categories. In one of them, the dispersion features are analysed,
and also peculiarities of the propagation and transformation of spin waves in a linear regime are
studied, both taking account of electromagnetic retardation and without it (see, for instance, [5–
10]). The other group deals with weakly non-linear dynamics and studies the conditions of the
origination, interaction and evolution of the one- and multi-soliton states of the magnetostatic
wave envelope [11–14]. For example, in [11, 12] in the framework of the extended non-linear
Schrödinger equation (ENSE), taking into consideration both the third-order dispersion and
dispersion of the non-linear term, the conditions for the formation, interaction and evolution of
volume magnetostatic wave envelope solitons are studied in the layered isotropic ferromagnet–
dielectric–metal structure magnetized both normally [11] and tangentially [12].

It was shown [11] that for the definite wavelength of the carrying forward volume
magnetostatic wave and for the definite ferromagnet-to-dielectric thickness relation the
necessary conditions for the origination of ‘dark’ and ‘bright’ Potasek–Tabor solitons may
be realized. For the tangentially magnetized plate, it was found [12] that the transformation
of the spectrum of the backward volume spin waves takes place not only at the variations of
the dielectric layer thickness, but also at the variations of the angle between the direction of
wave propagation and the dc magnetic field. These spectrum peculiarities allow us to control
the non-linear scenario of wave propagation more effectively, with the help of the above-
mentioned parameters. The ‘bright soliton’ regime may be changed to the ‘dark soliton’
and vice versa. It was noted also that in the range of large wavelengths in the tangentially
magnetized structure, contrary to the normally magnetized structure, the ‘dark’ but not ‘bright’
Potasek–Tabor solitons are realized. There are few experimental works on the non-linear
dynamics of ferromagnet–dielectric–metal structures among the investigations in the field of
thin magnetic films, and here the paper [13] attracts attention. The results of experimental
investigations into the non-linear properties of the pulses of the surface magnetostatic wave in
this structure are discussed there. In particular, it was revealed that a magnetostatic surface spin
wave with the wavelength comparable with the thickness of the dielectric layer � is unstable
with respect to both automodulation and parametric excitation of spin waves. We call attention
to the fact that the value λ ≈ � in the range of the magnetic field that is mentioned in [13]
corresponds to the ‘zero-dispersion’ point (∂2ω/∂k2 ≈ 0, where ω is the frequency and k is
the wavenumber). The spatial dispersion of the group velocity of the magnetostatic waves is
absent in this point, and hence the dispersion spreading out of the pulse transmitting along
the system is lower in this regime. The ‘zero dispersion’ is one of the key problems in non-
linear optics now. Moreover, the wavelength at which this point appears is the performance
characteristic of the waveguide fibre [15]. The detailed comparative analysis of the non-linear
and dispersion properties of waveguide fibres and thin magnetic layers was carried out in [16].
Usually, the fibre waveguides are treated as weakly non-linear media. In contrast to this, the
magnetic films are systems with higher-order dispersion and significantly non-linearity. The
presence of the ‘zero-dispersion’ point in the range of real values of the physical parameters is
a remarkable occurrence. It allows us to reduce a number of mechanisms responsible for the
dispersion spreading out from the travelling magnetostatic pulses in the definite range of the
wavelength in the ferromagnet–dielectric–metal structure.

In the present paper the conditions for the origination, existence, interaction and evolution
of one- and multi-soliton states of the envelope of surface magnetostatic waves are studied,
taking account of the fine structure of the spectrum in the ferromagnet–dielectric–metal
structure. To study this we use the ENSE model and involve numerical methods. It should be
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noted that one of the first attempts to solve the Cauchy problem for this type of equation was
undertaken in [17]. The equation was solved numerically and all coefficients of the equation
were put equal to unity. It was shown that, if the amplitude of the initial pulse exceeds some
threshold values, several soliton-like states are excited in the system, but the question of the
properties of this state remain open.

The paper consists of the introduction,five further sections and the conclusion. In section 2
the geometry, ground state and peculiarities of the magnetostatic surface wave spectrum are
discussed for this structure magnetized in the surface plane. Here also the conditions are
formulated for the ‘zero-dispersion’ point realization, provided that λ ≈ �, and also the values
of the external dc magnetic field, and the values of the ratio �/d (where d is the thickness of
magnetic layer) are presented. In section 3 the evolution equation for the envelope of surface
magnetostatic waves is obtained and the problem of modulation instability of a uniform state
is discussed. The stability of a plane wave with the wavevector being close to its value in
the ‘zero-dispersion’ point is considered in section 4. The long-wavelength modulations of
a monochromatic wave in the vicinity of this point are also investigated. It is shown that the
low-amplitude modulation of spatially non-localized non-linear waves with the wavelength
λ < � may lead to the formation of specific ‘dark’ quasi-solitons (the weakly damped soliton
in the background of the wave [18, 19]). Their evolution is described by the Korteveg–de Vries
(KdV) equation. In section 5 some exact solutions of ENSE describing isolated waves with the
profile remaining constant during propagation, i.e. ‘dark’ and ‘bright’ solitons, are considered.
The results of numerical analysis of the conditions for formation of multi-soliton states are
also presented. It is shown that there exists an initial distribution amplitude threshold for the
excitation of multi-soliton states, which is absent for one-soliton ones.

2. Ground state and spectrum of magnetostatic surface waves

Let us consider the part of the non-linear processes realized in this system that are connected
with the dependence of the dispersion relation for magnetostatic waves on the amplitude,
as was done in [11, 12]. The input equations for the spectrum calculation are the Landau–
Lifshitz equation and magnetostatic equations with corresponding boundary conditions (see,
for instance, [20]). The resulting boundary value problem is solved for three regions of a
film, namely the magnetic, dielectric and metal layers. It is known that the magnetostatic
approximation (the neglected electromagnetic retardation) allows us to simplify the dispersion
relation and to write them down in a form convenient for the analysis of weakly non-linear
dynamic effects [21]. As a rule, this approach is used in the case of small dielectric permeability
values for a ferromagnetic film and surrounding media in the range of not so large frequency
values [5]. In the case under consideration the domain of existence for the waves studied
lies lower than 5 GHz (see below). We hope that the magnetostatic approximation will have
enough reliability for qualitative analysis of weakly non-linear processes in the studied system.

As indicated above, we shall consider a three-layered plate with the ferromagnet–
dielectric–metal structure (see figure 1). In practice, the structure studied in the present paper
is composed of yttrium iron garnet (YIG) film, separated from a conducting base plane by
a dielectric layer. We suppose the magnetic layer to be isotropic and all plates, including
the magnetic layer, to be infinite in the plane (z, y). The isotropic model of the ferromagnet
restricts the possibility of applying the obtained results for the analysis of experimental data
on the evolution of the soliton envelope for the surface magnetostatic waves. For a more
adequate description of the features of the propagation of non-linear excitations it is necessary
to take account of the effects of magnetocrystalline anisotropy for the ferromagnetic layer. In
our opinion, the model of an isotropic magnet is sufficient for the qualitative analysis of the
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Figure 1. The coordinate system.

phenomena considered (see [7–9]). Let the thickness of the ferromagnetic layer be d and let
this layer be separated from the metallic one by a dielectric interlayer with the thickness �.
For the sake of simplicity, the dielectric is considered to have the same dielectric constant as
the magnetic film. The metallic plane is assumed to be ideally conducting and the normal
component of magnetic induction vanishes on the conducting surface. We assume also that
the wave propagates parallel to the conducting plane along the y axis and that the dc magnetic
field is perpendicular to the direction of wave propagation. In this statement, the problem
of obtaining the dispersion relation for magnetostatic surface waves in a three-layer isotropic
ferromagnet–dielectric–metal film was solved in [9]. The extension of these results to the
magnetic layer of finite thickness (bounded in the z direction) presents no special problems
and was done in [10].

The dispersion relation for surface magnetostatic waves obtained in [9] for the case under
consideration has the form

�s = −[C(2 − B) − A] ± {[C(2 − B) − A]2 + 4(2BC)[C(2B�2
H + �H (2 + B) + 1)

− (1 + A�H )]}1/2[2(−2BC)]−1, (1)

where
A = 1 + tanh(−|k|�), B = 1 − tanh(−|k|�), C = exp(2|k|d),

� = ω

ωM
, �H = ωH

ωM
, ωH = γ H, ωM = 4πγ M0,

(2)

where ω is the circular frequency, γ is the gyromagnetic ratio, H is the dc magnetic field and
M0 is the saturation magnetization, s = k/|k|. Here the frequency of the magnetostatic surface
waves lies within the range

[�H (�H + 1)]1/2 � � � �H + 1
2 . (3)

Let us evaluate this range for the plate with the following material parameters: d = 10 µm,
� = 25 µm, H = 200 Oe, 4π M0 = 1750 G. The upper frequency limit for this range is equal
to 3.2 GHz and the lower frequency limit is 1.7 GHz. It is clear that the limiting frequency
values increase with the dc magnetic field.

Let us note some limiting cases: � → ∞ (metallic layer is absent) and � → 0 (dielectric
layer is absent). In the first case the dispersion relation (1) can be recast in the form

exp(−2|k|d) = 1 + 4�H + 4�2
H − 4(�s)2, s2 = 1 (4)

which is exactly the same as that obtained by Daemon and Eshbah [22]. The surface wave
is degenerate because the dispersion relations for the s = +1 and −1 cases coincide. In the
absence of a dielectric layer the relation (1) has the following form:

exp(2|k|d) = 1 + �s + �H

−2�2 + �s + (�H + 1)(2�H + 1)
. (5)
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Figure 2. The spectrum of surface magnetostatic waves (a), the first derivative of the dispersion
relation with respect to the wavenumber (b) and the second derivative (c) for several values of the
parameter �/d and the dc magnetic field: M0 = 1740 G, d = 14 µm.

Apparently, the expression of this type for a surface wave spectrum was obtained first by
Seshadry [23] in the analysis of dipole resonance peculiarities for plane wave scattering in
axially magnetized ferrite poles with an ideally conducting kernel. The fact that the parameter
s appears in the first power means that the waves propagating in the +y and −y directions have
different characteristics (i.e. velocities), so that the degeneracy of the surface waves taking
place in the case � → ∞ is eliminated here.

Let us consider the forward (that means, having the positive projection of group velocity
vg on the direction of phase velocity vph) surface wave propagating in the +y direction
(s = +1). Exactly for this wave the ‘dispersionless’ regime of linear wave propagation was
experimentally observed in the range between 2350 and 2550 MHz [9]. Figure 2(a) presents
the dispersion relation � (kd) for various values of the dc magnetic field H , the dielectric-to-
ferromagnet thickness ratio �/d and the following values of material parameters: d = 14 µm,
4π M0 = 1750 G. The first derivative of the dispersion � (kd) with respect to (kd) is given
in figure 2(b) and the second derivative is given in figure 2(c) for the same H values and �/d
ratio. It follows from figure 2(c) that the dispersion curve has ‘zero-dispersion’ points in which

∂2�
∂(kd)2 (k0d) = 0. For some curves there is one such point, while for others there are two of
them, with the second point lying in the range where (kd) is comparable to unity. As was
noted in the introduction, the left ‘zero-dispersion’ point may appear at λ ≈ �. Figure 3(a)
displays the surface ∂2�

∂(kd)2 |k=�−1 in the space of the variables �/d and the dc magnetic field H .
The bold broken curve in this figure arises from the intersection of this surface with the plane

∂2�
∂(kd)2 |k=�−1 = 0. This curve is shown in figure 3(b) individually. Such a simple dependence of
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the wavevector corresponding to the ‘zero-dispersion’ point on the thickness of the interlayer
k ≈ �−1 takes place only for the surface magnetostatic waves in a ferromagnet–dielectric–
metal structure for the geometry depicted in figure 1. For example, if the structure is taken
with a dielectric-to-ferromagnet thickness ratio �/d = 2 and the dc field H0 = 850 Oe, the
‘zero-dispersion’ point has the following parameters: kd = (�/d)−1 = 0.5, ω = 4.81 GHz.
In the case of volume magnetostatic waves both in normally and tangentially magnetized
structures (see [11, 12]) this dependence is more complicated. The dependence H (�/d)

given in figure 3(b) makes it possible to set external parameters H and �/d in such a way that
the ‘zero-dispersion’ point is realized for the wavelength λ = �. Note that the dependence
H (�/d) practically does not change if the magnetic layer has finite width. To prove this
statement we have used the spectrum of surface magnetostatic waves obtained in [10], which
we do not present here. The evolution of an envelope soliton in the ‘zero-dispersion’ point, as
is well known, is described by ENSE with third-order dispersion (see, for example, [18]) and
has some interesting features.

3. Equation of evolution and the modulation instability

The basic non-linear effect analysed in the present paper is the dependence of the magnetostatic
surface wave frequency � on the oscillation amplitude ϕ. The non-linearity enters into the
dispersion relation (1) through the z component of the magnetization. In the local frame
of (xyz) its equilibrium direction coincides with the z axis. For small deviations from the
equilibrium value M = M0 (where M0 is the saturation magnetization) it is defined by

Mz = M0{1 − (M2
x + M2

y )/(2M2
0 )}1/2 = M0(1 − |ϕ|2). (6)

As a consequence, the dispersion law (1) can be represented in the form of the relation

G(k,�, |ϕ|2) = 0 (7)

which permits us to write down the non-linear equation that defines the function ϕ(r, t) as an
envelope of the carrier wave, using the procedure proposed in [21, 24]. As a result we obtain
the following equation for this function:

i

(
∂ϕ

∂ t
+ vg

∂ϕ

∂x

)
+

1

2
Dω

∂2ϕ

∂x2
− iαω

∂3ϕ

∂x3
− Nω|ϕ|2ϕ + iQω

∂

∂x
(|ϕ|2ϕ) = 0 (8)
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Figure 4. The wavenumber dependence of the non-linearity coefficient Nω (a), and that of the
non-linearity dispersion Qω (b); the parameters of the curves correspond to figure 2(a).

where vg = ∂�/∂k(k, ϕ = 0) is the group velocity, Dω = ∂2�/∂k2, αω = 1
6∂3�/∂k3,

Nω = ∂�/∂|ϕ|2 and Qω = ∂ Nω/∂k. Deducing equation (8) we have assumed that the
dispersion relation (7) is resolved with respect to the frequency � as a function of k and |ϕ|2.
The first term (in the parentheses) describes the waves that propagate with a group velocity
vg in the linear medium without dispersion. The second (second-order dispersion) and the
third (third-order dispersion) are responsible for the dispersion broadening of the packet, the
coefficient Nω is responsible for non-linearity and Qω describes the dispersion of the non-linear
term.

Note that the term with the coefficient αω is especially important in the vicinity of the
‘zero-dispersion’ point. The coefficient Nω is negative in the considered problem for kd � 1
(see figure 4(a)). The non-linearity dispersion term that is proportional to Qω = ∂ Nω/∂k is
also negative in this range (see figure 4(b)). Note also that, according to figure 2, the quantities
Dω and αω can be positive or negative. The first, second and fourth terms correspond to the
classical entirely integrable non-linear Schrödinger equation (NSE). Besides �, the following
quantities in equation (8) are dimensionless: x → x/d , t → tωM , k → kd . After passing over
to the frame of reference moving with the group velocity of linear waves with x → X − vgt ,
and after a linear transformation ϕ(x, t) = A
(m X, t), where m = |Dω|−1/2, A = |Nω|−1/2,
α3 = −αω|Dω|−3/2 and α1 = Qω|Dω|−1/2|Nω|−1 equation (8) can be transformed into

i
∂


∂ t
+ sgn(Dω)

1

2

∂2


∂ X2
+ iα3

∂3


∂ X3
+ iα1

∂

∂ X
(|
|2
) + |
|2
 = 0 (9)

where the sign in the second term is determined by the sign of the second derivative
∂2�/∂k2. As a rule, the equation of the type (9) is called the ENSE [25, 26]. For arbitrary
relations between its coefficients this equation is not entirely integrable. Note that at the
present time some particular cases are known in which this equation is entirely integrable
(see, e.g., [27, 28]).

Unfortunately, the procedure for obtaining the ENSE used above gives a rather rough model
of non-linear and dispersion effects. It has a limited area of applicability. At first, it may be used
only for small deviations of magnetization from its equilibrium position (|ϕ| � 1). Secondly,
it cannot be used for kd → 0, because for such kd the spectrum of linear spin excitations of
the structure considered is not an analytical function of kd (ω(k) ∼ |kd|). And, finally, in this
approach the non-local character of the magnetic dipole–dipole interaction is not accounted
for. It is known that taking account of non-locality leads to a non-linear integral-differential
evolution equation. The problem of damping is extremely important here. In this context it is
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necessary to consider both uniform and non-uniform damping in the modelling of magnetic
film dynamics. Moreover, non-uniform terms prevail sometimes [29].

In spite of these circumstances, in most of the experimental work on solitons in thin
magnetic films known today the interpretation of results is based essentially on the approach
proposed in [21, 24]. Here the remarkable papers of Bordman with co-workers [30, 31],
Patton [2] and Kalinikos [1] can be mentioned. At the end of the 1990s, we suggested
an alternative approach to the derivation of evolution equations in thin magnetic films (not
layered) [32], which allows us to take account correctly of the analytical peculiarities of
the linear spectrum of spin excitations and long-range magnetostatics interaction character.
Nevertheless, in spite of its limitations the heuristic approach used to derive the evolution
equation for the envelope of the carrying wave (8) has its validity for finite values of kd
and rather small amplitudes ϕ. Note also that equation (8) has been used recently for the
interpretation of experimental data on the evolution of solitons in single-layer thin magnetic
films of iron garnets [33].

We shall analyse below the conditions of instability of the envelope wave and also how
the initial distribution evolves with time. Let us consider at first the simplest case of the
homogeneous initial state. For this case, we linearize equation (9) in the vicinity of some
solution independent of the coordinate X . This solution can be easily found:


0(t) = A0 exp(i|A0|2t), (10)

where A is an arbitrary complex number. Assume


(X, t) = 
0(t)(1 + ε(X, t)) (11)

and linearize the ENSE with respect to ε(X, t). It is easy to show that the equation for ε(X, t)
in this case has the form

i
∂ε

∂ t
+ sgn(Dω)

1

2

∂2ε

∂ X2
+ iα3

∂3ε

∂ X3
+ |A0|2(ε + ε∗) + iα1|A0|2

(
2

∂ε

∂ X
+

∂ε∗

∂ X

)
= 0. (12)

We shall look for the solution of (12) in the form ε = b1 exp[i(�̃t + K X)] + b2 exp[−i(�̃∗t +
K X)], which leads to the dispersion relation

�̃ = −α3 K 3 + 2α1|A0|2 K ± {K 2[ 1
4 K 2 − |A0|2(σ − |A0|2α2

1)]}1/2, (13)

where σ = ±1, depending on the sign ‘+’ or ‘−’ of the second derivative ∂2�
∂k2 . The modulation

instability (Im �̃ �= 0) appears for the perturbations with wavevectors varying in the range

0 < K 2 < 4|A0|2(σ − |A0|2α2
1). (14)

For K = K0, that is determined by the relation

K 2 = 2|A0|2(σ − |A0|2α2
1), (15)

one may expect the maximum rate of developing modulation instability. It follows from
the relations (14) and (15) that the considered modulation instability is developed only for
σ = 1, provided the following inequality |A0|2α2

1 < 1 (or |A0|2 Qω < N2
ω Dω) is satisfied.

For instance, for the point of the spectrum kd = 0.195 with the proviso that the field value
H0 = 1100 Oe, �/d = 100/14 and the coefficients α1 and α3 are equal, respectively, to −0.59
and −0.46, this inequality is easily satisfied, because |A0|2 ≈ |ϕ|2, and |ϕ|2 � 1. The initial
stage of the development of the modulation instability from the homogeneous state is described
by ENSE for the mentioned values of spectral parameters and is presented in figure 5. The
initial distribution in this case was chosen in the form


(X) = A0(1 + δ cos K0 X), (16)
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Figure 5. The initial stage of the modulation instability development.

where A0 = 0.2 and δ = 0.01. The interval of calculation was selected to be equal to
the wavelength λ0 = 2π/K0 of the most unstable harmonic (for the parameters taken it was
λ0 ≈ 3.14×10−2 cm). The initial stage of the development of modulation instability explicitly
demonstrates the appearance of a localized soliton state. Unfortunately, we cannot determine
its parameters with high enough accuracy to relate these states to currently known ENSE
solitons, for example [25, 27, 28].

4. Long-wavelength modulations of monochromatic non-linear waves in the vicinity of
the zero-dispersion point

To make clear the peculiarities of the weakly non-linear dynamics of magnetostatic surface
waves near the ‘zero-dispersion’ point let us consider the stability condition for the plane wave:


0(X, t) = w
1/2
0 exp(i(�0t + k0 X)) (17)

which is an exact solution of the equation

i
∂


∂ t
+ i

∂3


∂ X3
+ iα2

∂

∂ X
(|
|2
) + |
|2
 = 0 (18)

where 
(nx, t) = Aϕ(x, t), A = N−1/2
ω , n = −α

−1/3
ω and α2 = Qωn A2. Equation (8) can

be reduced to model (18) in the vicinity of the ‘zero-dispersion’ point. Here in (17) w0 is the
amplitude and k0 is the wavenumber corresponding to the deviation of the wavevector from its
value at the point where Dω = 0. The values of αω, Nω and Qω are taken at the point of zero
dispersion. The dispersion relation for the wave (17) has the form

�0 = k3
0 + w0(1 − α2k0). (19)

For analysis of the stability conditions let us assume 
 = 
0(1 + 
̃), where 
̃ � 1. It is
determined by the equation

i
∂
̃

∂ t
− 3ik2

0
∂
̃

∂ X
− 3k0

∂2
̃

∂ X2
+ i

∂3
̃

∂ X3
+ w0(1 − α2k0)[
̃ + 
̃∗] + iα2w0

[
2
∂
̃

∂ X
+

∂
̃∗

∂ X

]
= 0.

(20)

The linear analysis shows that the plane wave (17) is modulation unstable (the exponential
increase of the amplitude) for k0 < 0, while for k0 > 0 the ground state is stable. In the
latter case the Goldstone modes may exist against the background of the plane wave with the
dispersion law λi (p), i = 1, 2:

λi (p) = (3k2
0 − 2α2w0 + εi m)p + (1 + εi n)p3 (21)
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where ε1 = 1, ε2 = −1, m = {6k0w0(1 − α2k0) + α2
2w

2
0}1/2 and n = 9k2

0/(2m). We have
assumed in deriving (21) that (k0 p)2 � m2. Taking into account that the wavevector for
magnetostatic surface waves at the point of zero dispersion is equal to �−1 (see section 2)
we can conclude that the modulation instability of the system takes place if the wavelength
satisfies λ > �. On the other hand, the plane wave (17) may be stable if λ < �, so that
Goldstone’s modes may exist against its background. However, we must keep in mind that
the wavenumber k0 should be taken in such a way that the inequality |∂2�/∂k2| � |∂3�/∂k3|
will not be violated.

Let us consider long-wavelength low-amplitude modulations of the wave (17). The
corresponding solution of equation (18) is presented in the form


(X, t) = w1/2 exp(i(�0t + k0 X + χ)) (22)

where w = w0(1 + V (X, t)), |V (X, t)| � 1, k0 � | ∂χ

∂ X | and �0 � | ∂χ

∂ t |. We shall write down
the set of coupled equations for the fields V and χ within the quadratic terms in V and χ . In
the long-wavelength limit in terms linear in χ and V in those equations the derivatives with
respect to spatial coordinates of orders higher than fourth may be neglected. Only low-order
derivatives will be retained in the non-linear terms. As result, we obtain the following set of
equations:

L̂V − 6k0χX X − 3∂X [(χX )2 + 2k0V χX ] + α2w0∂X [2V + 3
2 V 2] = 0,

L̂χ + M̂V − 3k0(χX )2 + α2w0χX V = 0
(23)

where

L̂ = L̂0 + ∂3
X , L̂0 = ∂t − (3k2

0 − α2w0)∂X , M̂ = −1 + 3
2 k0∂

2
X . (24)

The field V can be easily eliminated from (23). The long-wavelength-limit relation between
fields V and χ in the principal approximation is used to transform the non-linear terms:

V (1 − α2w0) = L̂0χ. (25)

After simple calculations a closed equation for χ(X, t) is obtained:

{−L̂2
0 − 2L̂0∂

3
X + 6k0∂

2
X − 9k2

0∂
4
X − 2ν∂X L̂0 + 3ν∂3

X L̂0}χ
+ 3∂X {χ2

X + 2(α2w0)
−1νk0χX (L̂0χ)} − ν{(L̂0χX )(L̂0χ) + χX (L̂2

0χ)}
− 3

2ν2(α2w0)
−1(L̂0χ)2 + 3k0 L̂0χ

2
X = 0 (26)

where ν = (α2w0)/(1 − α2w0k0). In deducing (26) we neglect the terms that are cubic in the
fields V and χ in the dynamic equation. The analysis shows that this is appropriate for waves
with the stationary profile travelling with the velocity u, if the following inequality is satisfied:

(6 + 6k0l[2ν(α2w0)
−1 + 1] − 3νl2[ν(α2w0)

−1 + 1])(1 − α2w0k0) � |l A| (27)

where A is a typical amplitude of the field χX , l = u − 3k2
0 + α2w0.

Let us consider the solutions of equation (26). Assuming

χ = χ(ξ), ∂ξχ = f (ξ), ξ = x + ut (28)

for f (ξ) we obtain the equation of the form

f 2
ξ = δ f 3 + γ0 f 2 + β f + α (29)

with the coefficients

δ = −1

3

γ1

β1
, γ0 = −α1

β1
, α1 = 6k0 − l(l − 2ν),

β1 = −(2l − 9k2
0) + 3νl γ1 = 6 + 6k0l[2ν(α2w0)

−1 + 1] − 3νl2[ν(α2w0)
−1 + 1],

(30)
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Figure 6. The range of values of the parameters α2 and k0 (I), which satisfy the long-wavelength
approximation (33).

and where α, β are arbitrary constants. Let us analyse possible solutions of equation (29). For
α = β = 0 and with the inequality γ0 > 0 fulfilled, equation (29) allows the formation of a
solitary wave with the profile that has the form

f = −γ0

δ

1

cosh2( 1
2 γ

1/2
0 ξ

) . (31)

For the case of α2 → 0 considered in [18] ν = 0, m2 = 6k0w0, δ = 2r(1+3k0l), r−1 = 2l+2mn
and γ0 = r(m2 − n2). For the solution of (31), the inequality (27) takes the form

γ 2
1 (1 − α2w0k0) � 3α1l. (32)

In addition to (32), the condition for the long-wavelength approximation must be fulfilled (the
typical size of the soliton �−1 ≈ γ

−1/2
0 must be greater than the wavelength k−1

0 ):∣∣∣∣�k0

∣∣∣∣ ≈
∣∣∣∣
√

γ0

k0

∣∣∣∣ � 1. (33)

The inequalities (32) and (33) define the range of the parameters α2 and k0 values, in which
the formation of the quasi-soliton (31) is possible.

The numerical analysis shows that, for the considered range of material parameter values,
the inequality (32) is satisfied practically always. However, the approximation (33) is true
not only for all values of α2 and k0, but only for the points with coordinates α2 and k0 lying
lower on the curve in figure 6 (region I). The dependence of the quasi-soliton (31) width on α2

and k0 is presented in figure 7(a), and also the amplitude of the same parameters is shown in
figure 7(b). When plotting the graphs in figures 6 and 7 we have assumed the parameter w0 to
be equal to unity.

Returning to the Goldstone modes (21), note that against the background of a plane
wave (17), as is shown in [18], the most intensively interacting are the modes with ε1 = 1.
It is convenient to pass over to the frame of reference moving with the phase velocity of the
waves v01 = 3k2

0 − 2α2w0 + m and to use new variables ξ = X + v01T , t = T , instead of x
and t , when the modulation of the wave (17) is determined by the excitation and interaction of
only these modes. As long as the dependence of the field χ(ξ, T ) on the variable T is weak in
the case under consideration, we can neglect the terms ∂2

T χ and ∂T ∂3
ξ χ in equation (26). As a

result, equation (26) is reduced to the KdV equation:

∂T f +
1

2

β̃1

α̃1
∂ξ ( f 2) + (1 + n)∂3

ξ f = 0 (34)
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where f = ∂ξχ , α̃1 = −2νm(α2w0)
−1 and β̃1 = 6 + 3ν[m(α2w0)

−1 − 1][4k0 − ν(m −
α2w0)]+2ν[m(α2w0)

−1 +1][3k0−ν(m−α2w0)]. It can be easily verified that the solution (31)
generalizes the one-soliton solution of the model (34). It follows from the analysis given above
that low-amplitude modulation of spatially non-localized non-linear waves (with λ < �) may
lead to the formation of the specific ‘dark’ quasi-soliton with the amplitude (31) and the phase

χ(ξ) = −2γ
1/2
0

δ
tanh

(
1

2
γ

1/2
0 ξ

)
. (35)

5. Some exact solutions of ENSE and numerical modelling of multi-soliton states

It is known that each partial differential equation describes an unlimited variety of qualitatively
similar phenomena or processes. This is evident from the fact that these equations have an
infinite set of particular solutions. This is true also for equations of the type (9). For example,
it is used in non-linear optics to describe the propagation of high-power femtosecond pulses
of light, when the effects of the third order dispersion become comparable with the effects of
the dispersion of the second order and its non-linear dispersion should be considered. In [34]
the processes of Raman scattering are additionally taken into account, which are important in
optics. Here in this section we discuss some analytical solutions of equation (9) and also we
numerically investigate the problem of the evolution of the initial magnetization distribution
specified in the form of pulses of various shapes.

As was noted above, equation (9) is not completely integrable at the arbitrary relation
between the coefficients. The exceptions are the cases α1 = α3 = 0, when it is transformed
into the classical NSE, and α1 = 6α3, when it is converted into a modified KdV equation
(see, for instance, [25]). As for the special cases of the solutions, which describe the
physical phenomena considered, they are chosen from the variety of particular solutions of
the differential equation with the help of initial and boundary conditions. One of the primary
attempts to develop a particular solution of equation (9), analogous to solutions of the classical
NSE which correspond to the rapidly decreasing case (‘bright’ soliton) and the case of finite
density (‘dark’ soliton), was undertaken in [35] where the special procedure was suggested
which allowed us to write down explicitly the simple one-parameter soliton-like solutions and
to define their domain of existence.
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These solutions of ENSE (9) were called ‘dark’ and ‘light’ solitons by analogy with the
localized states of NSE. A year later, analytical solutions similar to the solutions of this type
were obtained by Potasek and Tabor [36]. They can be written in the following forms:


(X, t) = a cosh−1(b(X − V t)) exp[i(κ X − ωt)] (36)

with the parameters

V = 2 pκ − 3α3κ
2 + α3b2, ω = pκ2 − α3κ

3 − (p − 3α3κ)b2

κ = 2 pα1 − 2α3

4α3α1
,

a2

b2
= 2

α3

α1

(37)

and


(X, t) = a tanh(b(X − V t)) exp[i(κ X − ωt)] (38)

with the parameters

V = 2 pκ − 3α3κ
2 + 4α3b2 + 3α1a2, ω = pκ2 − α3κ

3 − (1 − α1κ)a2

κ = 2 pα1 − 2α3

4α3α1
,

a2

b2
= −2

α3

α1

(39)

where p = 1
2 sgn(Dω). Retaining the terminology adopted in [11], we call these analytical

solutions (36) and (38) the Potasek and Tabor soliton solutions (PT solitons); (36) is called
the ‘bright’ PT soliton and (38) a ‘dark’ PT soliton. These solutions represent solitary waves
which do not change their profile during propagation and have a finite energy. However, they
can hardly be treated as real solitons in the sense of inverse scattering problem terms [35].
Note that the solution corresponding to the case of finite density is not built up in [34] (see
also [14]).

Note that the existence of both solutions (36) and (38) of equation (9) is possible under the
condition a2/b2 > 0. This quantity is determined by the ratio of the third-order dispersion and
the dispersion of non-linearity (2α3/α1). The range of negative values of 2α3/α1 corresponds
to ‘dark’ solitons and that of the positive values to ‘bright’ ones. The calculated wavenumber
kd dependence of the 2α3/α1 for surface magnetostatic waves for various values of the ratio
�/d is presented in figure 8. For all curves in this picture with various values of �/d the range
of small kd values corresponds to ‘bright’ PT solitons. With increasing kd the range appears in
which 2α3/α1 < 0 and ‘dark’ PT solitons are realized. This situation differs principally from
the case of volume magnetostatic waves in a tangentially magnetized film where the small kd
range corresponds to ‘dark’ PT solitons and the range of larger values of kd to the ‘bright’
ones [12]. With increasing relative interlayer thickness �/d the stability domain of bright
solitons narrows down. For instance, if �/d = 1 the ratio 2α3/α1 is positive for kd < 0.63
and for �/d = 10 it is positive only for the values of kd < 0.15.

Below, using numerical methods in the framework of equation (9) we shall study the
evolution problem of the initial magnetization distribution which is given in the form of the
impulses of different shapes. These equations will be solved in the domain of existence of
‘bright’ solitons at zero boundary conditions at infinity and the initial distribution chosen in
the form of a localized pulse with a soliton-like envelope:


(X, 0) = A

cosh(B(X − X0))
(40)

and with an envelope close to a Gaussian distribution:


(X, 0) = A exp

[
− B2

2
(X − X0)

2

]
(41)
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at several values of �/d, M0 = 1740 G, d = 14 µm.

with various characteristic parameters A and B , where A is the amplitude and B−1 is an
effective width of the distribution. The choice of initial distribution in the form given by (40)
is trivial. Such a distribution coincides in essence with the form of a single soliton. If we
take the values of the parameters A and B in this distribution close to the exact relations (37)
then the formation of a ‘bright’ PT soliton occurs as follows. At the beginning the radiation
is split off from the starting pulse. This radiation rapidly spreads out and one ‘pure’ soliton
is formed in the system. All parameters of this soliton, naturally, satisfy the relations (37).
The aforesaid refers to both the distributions (40) and (41). The shape of the distribution that
is obtained as a result of the evolution of (40) or (41) substantially depends on the parameter
ξ , which is defined as follows: A2/B2 = ξ2α3/α1. Recall that the parameter α3 describes
the third-order dispersion and the parameter α1 describes the non-linearity dispersion. In our
opinion, the parameter ξ here plays the same part as the parameter (n − 1/2)2, where n is
the number of generated solitons, which was introduced in [21] (see also [2], relation (14)).
The situation that was investigated in [2] and [21] was analytically described by the classical
NSE. The parameter (n − 1/2)2 was the coefficient that related the product of the distribution
amplitude by the distribution width with the ratio of the second-order dispersion to the non-
linearity. In this context ξ relates the ratio of the distribution amplitude to the inverse width
of the distribution with the ratio of third-order dispersion to the non-linearity dispersion. Note
also that, for ξ = 1, the distribution of the form (40) is the exact solution. We have investigated
the situations in which the parameter ξ runs within the relatively wide range of values from
very small (�1) to about ten.

If we take the distribution with a small amplitude at given α3 and α1 such that ξ � 1,
then, as a rule, a single soliton is formed in the system (see figure 9) with characteristics that
are defined by the relations (37) both for the soliton-like (40) and for the Gaussian (41) initial
pulses. In such an approach we did not find the threshold of the single-soliton formation up
to extremely small values of ξ . We succeeded in establishing that, for the soliton-like initial
distribution, the single ‘bright’ soliton is formed for ξ belonging to the interval 0 < ξ < 3.4,
and for the Gaussian distributions it is formed for ξ taken from a wider interval 0 < ξ < 6.

In the case of large ξ values the following scenario is realized. If one takes the amplitude
value of the initial distribution considerably exceeding the amplitude of the exact solution
(ξ > 1), not one but several solitons may be generated in the system and the multi-soliton state
is formed in a threshold way. For given values of α3 and α1 the intervals of the ξ values can
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Figure 9. The evolution of the initial distribution (40) to the one-soliton state for ξ = 0.1. The
parameters of the system are �/d = 5, kd = 0.27, starting distribution (a), initial stage of
distribution evolution (b) and the just formed soliton (c).

be determined in which, say, two, three or more solitons necessarily originate (see figure 10).
Unfortunately, we were unable to determine the upper limit of the range of formation of three
solitons. Figure 10 illustrates the process of formation of two solitons from the Gaussian
distribution. Two solitons are formed from the distribution (40) for ξ , belonging to the interval
3.4 < ξ < 10, and from the Gaussian distribution (41) for ξ lying in the interval 6 < ξ < 20.
It is evident from figure 10 that the velocities of propagation of the just-formed solitons may
differ not only in value, but also in sign as well. It should be emphasized that we keep in mind
that the velocity is measured in the frame of reference moving with the group velocity.

One of the first attempts to solve the Cauchy problem for equation (9) was undertaken
in [17]. Equation (9) has been solved at the zero boundary conditions and for the initial
distribution in the form of the localized envelope similar to (40). In this calculation all
coefficients of equation (9) were put equal to unity. It was shown that, if the amplitude
and width of the initial distribution exceeds some threshold values, several soliton-like states
are excited in the system. These threshold values of the amplitude and width of the initial
distribution corresponding to two, three and four soliton states were obtained. The question
of the character and properties of the distributions obtained remains open. The numerical
calculations carried out by us differ in two points. First, the coefficients of equation (9) were
taken as the values corresponding to the real high dispersion system, that is, the three-layer
film. The second, and principal point is we happen to identify the states obtained as the
Potasek–Tabor solitons. The characteristic parameters of these solitons are described by the
relations (37). Such an identification was not done in [17].
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6. Conclusion

In the framework of the ENSE, taking account of both the third-order dispersion and the non-
linearity dispersion, the peculiarities of the generation, interaction and evolution of envelope
solitons of surface magnetostatic waves in a layered ferromagnet–dielectric–metal structure
are studied. It is shown that the dispersion curves of these waves demonstrate non-monotonic
behaviour that is transformed with the variation of dielectric interlayer thickness �. For all of
this, the value � = k−1 may be the ‘zero-dispersion’ point of the spectrum in a definite range
of layer thicknesses and dc magnetic field. The transformation of the dispersion curve allows
us to control effectively the peculiarities of the non-linear regime of the wave’s propagation,
changing the ‘bright’ soliton-like regime to the ‘dark’ soliton-like and vice versa. It is shown
also that, in the range of small kd values, the ‘bright’, but not ‘dark’, Potasek–Tabor solitons
are realized in the case of the surface waves considered, contrary to the volume waves (and
the same in the tangentially magnetized structure).

The process of low-amplitude modulation of spatially non-localized non-linear waves is
studied in the vicinity of the ‘zero-dispersion’ point � = k−1. It is shown that the modulation
of the waves with the wavelength λ < � can lead to the formation of specific ‘dark’ quasi-
solitons described by the KdV equation. In contrast to this, the waves with the wavelength
λ > � are modulation-unstable with their amplitude exponentially increasing in the vicinity
of the ‘zero-dispersion’ point. The numerical analysis of the conditions of formation of the
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multi-soliton states shows that a certain amplitude of the initial distribution should be reached
for the excitation, while no such threshold exists for single-soliton states.

We hope that the present analytical and numerical findings will help both in the
experimental search for new stable localized states of the envelope surface waves and in the
investigation of the peculiarities of their origination, interaction and transformation occurring
with changes in the material parameters of the layered metallized structure. In this respect,
the ferromagnet–dielectric–metal structure is a unique model system with variable dispersion
and non-linear properties.
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